1.0 SCOPE

1.1 This piping specification covers the requirements for machine made reinforced thermosetting resin pipe and fittings, 1" - 30", manufactured according to ASTM D2996, the standard specification for filament wound pipe. These specifications shall cover Schedule 40 heavy duty pipe and fittings for use with a broad base of corrosive chemical environments including acids, caustics, brines, various waste solutions, as well as many solvents.

Both Pipe and Fittings (Tees, Elbows, Laterals, Reducers, and Crosses) shall be manufactured with a double Nexus® synthetic veil reinforced Premium Novolac Vinyl Ester resin internal corrosion barrier, an Epoxy filament wound fiberglass reinforced cage, and a standard Nexus® reinforced external corrosion barrier. This material shall be post-cured to form an integral structure and provide optimum cross-linking density.

2.0 MATERIAL

2.1 Raw materials will meet or exceed specifications for Epoxy and Vinyl Ester resin systems and fiberglass materials.

2.2 The resin, reinforcement, pigments, fillers and other materials, when combined as a composite structure shall produce a pipe that shall meet or exceed the requirements of the classification system listed in ASTM D2310.

3.0 PIPE CONSTRUCTION

3.1 The pipe shall consist of three specific layers; the corrosion resistant minimum double Nexus® reinforced Novolac Vinyl Ester internal corrosion barrier, the filament wound reinforcement (cage) using aromatic amine cured Epoxy, and the corrosion / UV resistant external corrosion barrier. This material shall then be post-cured to form an integral structure and provide optimum cross-linking density.

3.1a The 60-mil internal corrosion barrier (inner liner) shall consist of a minimum two layers of Nexus® synthetic veil saturated with Novolac Vinyl Ester resin. This layer shall be a maximum of 90% resin and 10% reinforcement to increase impact resistance.

3.1b The glass reinforcement, or cage, shall be continuous glass roving wound at 54 3/4 degrees to the longitudinal axis of the pipe, using aromatic amine cured premium Epoxy resin, and shall be not less than 65% glass for maximum strength and flexibility.

3.1c The external corrosion barrier will be Nexus® synthetic veil reinforced for corrosion resistance and UV resistance. This is required to control the OD for straight socket design connections.

4.0 FITTINGS

All fittings such as elbows, laterals, tees and reducers shall be equal or superior in
strength to the adjacent pipe section and shall have the same internal diameter as
the pipe. Fittings shall be filament wound, and have a minimum double
Nexus® veil reinforced Novolac Vinyl
Ester internal corrosion resistant barrier (60 mils), filament wound and
glass reinforced structural cage, and a Nexus® synthetic veil reinforced external corrosion barrier with standard
25 year guarantee against ultraviolet degradation (fiber blooming).

4.1 Elbows - Manufactured in standard configurations with straight socket ends
designed for the controlled OD of the pipe.

4.2 Reducers - Designed as concentric or eccentric gradual changes in diameter
to minimally affect the fluid flow, and manufactured with straight socket ends.

5.0 CONNECTIONS

5.1 Prefabrication - When requested by the customer, the manufacturer shall
prefabricate into ready-to-ship sub-assemblies to minimize the use of
field-fabricated connections.

5.2 Straight Cement Socket Joints - Shall be used with both pipe to fitting
connections as well as pipe to pipe connections using a coupling. Tapering or
machining of the pipe shall not be allowed.

5.3 Flange connections - Shall be used to join the fiberglass pipe and fittings to
other equipment. Flanges shall be designed for the operating pressure per
the line requirements as a minimum. Flange dimensions shall conform to
ANSI/ASME B16.5 150 lb drilling. Where flanges connect to raised face surfaces
(valves, etc.), a spacer ring shall be added to achieve a flat mating surface.

5.4 Gasket material - For flanged connections this shall be an elastomer
which is compatible with the service.

Teflon and Teflon envelope gaskets are
not recommended. See 9.5.

6.0 STRAIGHT SOCKET CEMENT JOINTS

6.1 This type of joint shall be the only means of joining pipe to pipe and fittings.
Tapering or machining of the pipe shall not be allowed, nor shall butt wrap joints. Pipe
to pipe connections shall be made with straight socket cement couplings. The only
exception to this specification shall be flanged connections as described in 5.3.

7.0 FLANGES

7.1 Flange Attachment - Flanges shall be attached to a pipe section only with
straight socket cement joints.

7.2 Flange Face - Flanges through 12”
diameter shall be grooved to allow use of a
full face gasket, flanges larger than 12”
shall be non-grooved. Full face gaskets are
required.

8.0 PRESSURE / VACUUM SERVICE

8.1 Please refer to the Conley
Product Data for specific rating of each
size.

9.0 RECOMMENDED INSTALLATION PRACTICE

9.1 Pipe hangers and spacing - Hangers shall be band type hangers contacting a
minimum of 120 degrees of the pipe
surface, and with a minimum width of 1” or
pipe diameter divided by 6, whichever is
greater.

9.2 Underground Installation - The pipe
shall be designed for burial of 3 feet to 20
feet under standard soil and bedding
conditions. Manufacturer shall design pipe
for required burial conditions.
9.3 Expansion - Expansion and contraction must be taken into consideration by the manufacturer and the proper design conveyed to the customer.

9.4 Bolts, Nuts, and Washers - Bolts, nuts, and washers shall be furnished by the customer. Metal SAE washers shall be used under all nut and bolt heads. All nuts, bolts and washers shall be of materials suitable for use in the exterior environment.

9.5 Gaskets - Gaskets shall be furnished by the customer. Recommended gasketing materials shall be a minimum of 1/8 inch in thickness with a suitable chemical resistance to the service. Gaskets shall have a Shore A hardness of 50 to 70. See the Conley Installation & Fabrication Manual for bolt torque requirements.

9.6 Fabrication - Fabrication procedures and certification of fabricators shall be in accordance with the Conley Installation & Fabrication Manual.

10.0 QUALITY ASSURANCE AND INSPECTION

10.1 Conley’s Quality Assurance program is in compliance with ISO 9001. Pipe and fittings shall be inspected and measured at each stage of manufacture, i.e. liner, reinforcement and external corrosion barrier. For optimum strength and corrosion resistance, all pipe and fittings shall be post cured.
This specification and recommendations it contains are based on data reasonably believed to be reliable. It is intended that this data be used by competent personnel having acceptable training in accordance with current industry practice and operating conditions. Variation in environment, application or installation, changes in operating procedures, or extrapolation of data may cause unsatisfactory results. Conley Composites makes no representation or warranty, express or implied, including warranties of merchantability or fitness for purpose, as to accuracy, adequacy or completeness of the recommendations or information contained herein. Conley Composites assumes no liability whatsoever in connection with this literature or the information or recommendations it contains.